Intelligent Network Services Software Defined Networking (SDN)

May 12, 2014

Tom Lehman
University of Maryland
Mid-Atlantic Crossroads (MAX)

SDN in the Context of RAINS

- SDN in the Context of RAINS Project
 Resource Aware Intelligent Network Services
- DOE Domain Science applications are not realizing benefits from the high performance advanced network infrastructures to the degree which they should
- The key problem is that compute, storage, and network resources are not integrated with each other or with domain application workflows
- A seamless, intuitive, and application focused integration of computation, storage, and networking is needed

Application Workflow Integration

A key focus is on technology development which allow networks to participate in application workflows

The Network needs to be available to application workflows as a first class resource in this ecosystem

RAINS Multi-Resource Service Plane (MRSP)

DOE Lab and ESnet Network Resource Approach

- ESnet services such as OSCARS dynamic provisioning will be incorporated into the MRSP ecosystem
- DOE Lab networks may not have a dynamic provisioning capability. We will work with Lab networking experts to extend the lab ScienceDMZ connections and features to support the MRSP.
- This may include placement of a MRSI interface agent to "cover" the Science DMZ.

Intelligent Network Services

- The network needs to be able to respond to "What is Possible?" and "What do you recommend" questions
 - today the application must say "provision this specific path at this specific time"
- These are referred to as "Intelligent Network Services"

SDN Considerations

- SDN Feature Options
 - Tightly coupled to application/workflow requests
 - Indirectly coupled to application/workflow requests
 - internal network management
- SDN Deployment Environments
 - Wide Area Networks
 - Regional Networks
 - Enterprise/DOE Lab/Campus Networks
 - Science DMZ
 - Interconnects to special Resources (Science Instruments, HPC, Big Data systems, others)
 - Data Centers
 - Clouds (Private, Public, Enterprise located)

SDN Considerations

- SDN Technologies Options
 - OpenFlow
 - OSCARS
 - traditional dynamic provisioning mechanisms
 - mpls/gmpls
 - management system
 - custom built systems using element APIs or CLIs
 - multiple vendor SDN options on the way
 - may support OpenFlow API and other vendor specific value added services

SDN Issues

- inter-controller, intra-domain
- inter-controller, inter-domain
- SDN Exchanges (SDNx)

SDN and RAINS Plans

- RAINS is building a multi-resource service plan with intelligent network services
 - SDN mostly hidden behind the Service Plane
- We will use different SDN techniques based on the deployment environment
- Wide Area: OSCARS
- Science DMZ
 - OpenFlow, when elements support,
 - Other automated provisioning mechanisms when OpenFlow not available or not sufficient
- DOE Lab Networks: still studying
- Regional Networks
 - OpenFlow, when elements support,
 - Other automated provisioning mechanisms when OpenFlow not available or not sufficient

SDN Exchange Thoughts

- SDN exchange definition has three main discussion topics
 - what is the "service" that will be exchanged?
 - VLANs? IP Routes? Flowspace? higher level services?
 - all of the above?
 - what is the mechanism for specifying and managing authentication and authorization in this SDN exchange environment
 - what is the advantage of an SDN exchange? what is the difference between and SDN exchange and an SDN network which has multiple peers?
 - one answer: easier to build a concentrated non-blocking multiple aggregate/network exchange fabric using a single switch as compared to a large distributed network
 - another answer: easier to apply complex polices in this same environment